|
|
|
|
|
|
|
|
|
|
秦大河、孙鸿烈、孙枢等, 2004, 中国气象事业发展战略研究:总论卷, 1-125,
北京: 气象出版社.
|
|
|
|
|
|
|
|
中国气象局, 2020, 地面气象自动观测规范, 北京:中国气象局: 1-152. |
|
Anthes R A, Bernhardt P A, Chen Y, et al, 2008, The COSMIC/Formosat-3mission:early results, Bull Amer Meteor Soc, 89(3): 313-334. DOI:10.1175/BAMS-89-3-313 |
Arriola J S, Lindskog M, Thorsteinsson S, et al, 2016, Variational bias correction of GNSS ZTD in the HARMONIE modeling system, J Appl Meteor Climatol, 55(5): 1259-1276. DOI:10.1175/JAMC-D-15-0137.1 |
Bai W H, Xia J M, Wan W, et al, 2015, A first comprehensive evaluation of China's GNSS-R airborne campaign:part Ⅱ-river remote sensing, Sci Bull, 60(17): 1527-1534. DOI:10.1007/s11434-015-0869-x |
Bauer S J, 1958, An apparent ionospheric response to the passage of hurricanes, J Geophys Res, 63(1): 265-269. DOI:10.1029/JZ063i001p00265 |
Benjamin S G, Brown J M, Brunet G, et al, 2018, 100 Years of progress in forecasting and NWP applications, Meteor Monogr, 59: 13.1-13.67. |
Bennitt G V, Johnson H R, Weston P P, et al, 2017, An assessment of ground-based GNSS zenith total delay observation errors and their correlations using the Met Office UKV model, Quart J Roy Meteor Soc, 143(707): 2436-2447. DOI:10.1002/qj.3097 |
Bennitt G V, Jupp A, 2012, Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models, Mon Wea Rev, 140(8): 2706-2719. DOI:10.1175/MWR-D-11-00156.1 |
Bevis M, Businger S, Herring T A, et al, 1992, GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system, J Geophys Res, 97(D14): 15787-15801. DOI:10.1029/92JD01517 |
Birkenheuer D, Gutman S, 2005, A comparison of GOES moisture-derived product and GPS-IPW data during IHOP -2002, J Atmos Oceanic Technol, 22(11): 1838-1845. DOI:10.1175/JTECH1814.1 |
Bonafoni S, Biondi R, Brenot H, et al, 2019, Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events:a review, Atmos Res, 230: 104624. DOI:10.1016/j.atmosres.2019.104624 |
Brenot H, Neméghaire J, Delobbe L, et al, 2013, Preliminary signs of the initiation of deep convection by GNSS, Atmos Chem Phys, 13(11): 5425-5449. DOI:10.5194/acp-13-5425-2013 |
Cai Y R, Bai W H, Wang X Y, et al, 2017, In-orbit performance of GNOS on-board FY3-C and the enhancements for FY3-D satellite, Adv Space Res, 60(12): 2812-2821. DOI:10.1016/j.asr.2017.05.001 |
Chen F, Crow W T, Bindlish R, et al, 2018, Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation, Remote Sens Environ, 214: 1-13. DOI:10.1016/j.rse.2018.05.008 |
Chew C, Lowe S, Parazoo N, et al, 2017, SMAP radar receiver measures land surface freeze/thaw state through capture of forward-scattered L-band signals, Remote Sens Environ, 198: 333-344. DOI:10.1016/j.rse.2017.06.020 |
Clarizia M P, Ruf C, Cipollini P, et al, 2016, First spaceborne observation of sea surface height using GPS-Reflectometry, Geophys Res Lett, 43(2): 767-774. DOI:10.1002/2015GL066624 |
Colliander A, Jackson T J, Bindlish R, et al, 2017, Validation of SMAP surface soil moisture products with core validation sites, Remote Sens Environ, 191: 215-231. DOI:10.1016/j.rse.2017.01.021 |
Dai A G, Wang J H, Thorne P W, et al, 2011, A new approach to homogenize daily radiosondehumidity data, J Climate, 24(4): 965-991. DOI:10.1175/2010JCLI3816.1 |
de Haan S, van der Marel H, Barlag S, 2002, Comparison of GPS slant delay measurements to a numerical model:case study of a cold front passage, Phys Chem Earth Parts A/B/C, 27(4-5): 317-322. DOI:10.1016/S1474-7065(02)00006-2 |
de Haan S, 2013, Assimilation of GNSS ZTD and radar radial velocity for the benefit of very-short-range regional weather forecasts, Quart J Roy Meteor Soc, 139: 2097-2107. DOI:10.1002/qj.2087 |
Garrison J L, Walker M, Haase J, et al, 2007, Development and testing of the GISMOS instrument. In:Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain:IEEE, 2007: 5105-5108. |
|
|
Guerova G, Jones J, Douša J, et al, 2016, Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmos Meas Tech, 9(11): 5385-5406. DOI:10.5194/amt-9-5385-2016 |
Hdidou F Z, Mordane S, Moll P, et al, 2020, Impact of the variational assimilation of ground-based GNSS zenith total delay into AROME-Morocco model, Tellus A:Dyn Meteor Oceanogr, 72(1): 1-13. |
Herring T A, Melbourne T I, Murray M H, et al, 2016, Plate boundary observatory and related networks:GPS data analysis methods and geodetic products, Rev Geophys, 54(4): 759-808. DOI:10.1002/2016RG000529 |
Jiang L M, Wang P, Zhang L X, et al, 2014, Improvement of snow depth retrieval for FY3B-MWRI in China, Sci China Earth Sci, 57(6): 1278-1292. DOI:10.1007/s11430-013-4798-8 |
Jin S G, Najibi N, 2014, Sensing snow height and surface temperature variations in Greenland from GPS reflected signals, Adv Space Res, 53(11): 1623-1633. DOI:10.1016/j.asr.2014.03.005 |
|
Jones J, Guerova G, Douša J, et al, 2020, Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate. COST Action ES1206 Final Action Dissemination Report, New York:Springer: 1-577. |
|
Ke F Y, Wang J L, Tu M H, et al, 2019, Characteristics and coupling mechanism of GPS ionospheric scintillation responses to the tropical cyclones in Australia, GPS Solut, 23(2): 34. DOI:10.1007/s10291-019-0826-2 |
Kehrer K, Graf B, Roeder W P, 2008, Global Positioning System(GPS)precipitable water in forecasting lightning at spaceport Canaveral, Wea Forecasting, 23(2): 219-232. DOI:10.1175/2007WAF2006105.1 |
Kerr Y H, Al-Yaari A, Rodriguez-Fernandez N, et al, 2016, Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation, Remote Sens Environ, 180: 40-63. DOI:10.1016/j.rse.2016.02.042 |
|
Klos A, Hunegnaw A, Teferle F N, et al, 2018, Statistical significance of trends in zenith wet delay from re-processed GPS solutions, GPS Solut, 22(2): 51. DOI:10.1007/s10291-018-0717-y |
|
Larson K M, Gutmann E D, Zavorotny V U, et al, 2009, Can we measure snow depth with GPS receivers?, Geophys Res Lett, 36(17): L17502. DOI:10.1029/2009GL039430 |
Larson K M, Small E E, 2016, Estimation of snow depth using L1 GPS signal-to-noise ratio data, IEEE J Sel Topics Appl Earth Observ Remote Sens, 9(10): 4802-4808. DOI:10.1109/JSTARS.2015.2508673 |
Liang H, Cao Y C, Wan X M, et al, 2015, Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China, Geod Geodyn, 6(2): 135-142. DOI:10.1016/j.geog.2015.03.001 |
Liang H, Zhang Y, Cao L J, et al, 2020, Temporal relations between precipitable water vapour and precipitation during wet seasons based on nearly two decades of data from the Lhasa River valley, Tibetan Plateau, Int J Climatol, 40(3): 1656-1668. DOI:10.1002/joc.6293 |
|
Lou Y D, Luo X M, Gu S F, et al, 2019, Two typical ionospheric irregularities associated with the tropical cyclones Tembin(2012)and Hagibis(2014), J Geophys Res:Space Phys, 124(7): 6237-6252. DOI:10.1029/2019JA026861 |
Lu N, Qin J, Yang K, et al, 2011, On the use of GPS measurements for Moderate Resolution Imaging Spectrometer precipitable water vapor evaluation over southern Tibet, J Geophys Res, 116(D23): D23117. |
Luo X M, Gu S F, Lou Y D, et al, 2020, Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1Hz, J Geod, 94(2): 27. DOI:10.1007/s00190-020-01359-7 |
Macpherson S, Laroche S, 2019, Estimation of ground-based GNSS zenith total delay temporal observation error correlations using data from the NOAA and E-GVAP networks, Quart J Roy Meteor Soc, 145(719): 513-529. DOI:10.1002/qj.3448 |
Masters D, Axelrad A, Katzberg S, 2004, Initial results of land-reflected GPS bistatic radar measurements in SMEX02, Remote Sens Environ, 92(4): 507-520. DOI:10.1016/j.rse.2004.05.016 |
|
Mears C A, Smith D K, Ricciardulli L, et al, 2018, Construction and uncertainty estimation of a satellite-derived total precipitable water data record over the world's oceans, Earth Space Sci, 5(5): 197-210. DOI:10.1002/2018EA000363 |
|
|
Moore A W, Small I J, Gutman S I, et al, 2015, National weather service forecasters use GPS precipitable water vapor for enhanced situational awareness during the Southern California summer monsoon, Bull Amer Meteor Soc, 96(11): 1867-1877. DOI:10.1175/BAMS-D-14-00095.1 |
Nakamura H, Koizumi K, Mannoji N, 2004, Data Assimilation of GPS precipitable water vapor into the JMA mesoscale numerical weather prediction model and its impact on rainfall forecasts, J Meteor Soc Japan, 82(1B): 441-452. DOI:10.2151/jmsj.2004.441 |
Neiman P J, Hughes M, Moore B J, et al, 2013, Sierra Barrier Jets, Atmospheric rivers, and precipitation characteristics in Northern California:a composite perspective based on a network of wind profilers, Mon Wea Rev, 141(12): 4211-4233. DOI:10.1175/MWR-D-13-00112.1 |
Ning T, Elgered G, 2012, Trends in the atmospheric water vapor content from ground-based GPS:the impact of the elevation cutoff angle, IEEE J Sel Topics Appl Earth Observ Remote Sens, 5(3): 744-751. DOI:10.1109/JSTARS.2012.2191392 |
Ning T, Wickert J, Deng Z, et al, 2016, Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data, J Climate, 29(7): 2443-2456. DOI:10.1175/JCLI-D-15-0158.1 |
Rabier F, 2005, Overview of global data assimilation developments in numerical weather-prediction centres, Quart J Roy Meteor Soc, 131(613): 3215-3233. DOI:10.1256/qj.05.129 |
Romm J, 2016, Climate Change:What Everyone Needs to Know, New York, United States:Oxford University Press: 1-329. |
Ruf C S, Atlas R, Chang P S, et al, 2016, New ocean winds satellite mission to probe hurricanes and tropical convection, Bull Amer Meteor Soc, 97(3): 385-395. DOI:10.1175/BAMS-D-14-00218.1 |
Sapucci L F, Machado L A T, de Souza E M, et al, 2019, Global Positioning System precipitable water vapour(GPS-PWV)jumps before intense rain events:a potential application to nowcasting, Meteor Appl, 26(1): 49-63. DOI:10.1002/met.1735 |
Schreiner W S, Weiss J P, Anthes R A, et al, 2020, COSMIC -2 radio occultation constellation:first results, Geophys Res Lett, 47(4): e2019GL086841. |
Seco A, Ramírez F, Serna E, et al, 2012, Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content, Atmos Environ, 49: 85-93. DOI:10.1016/j.atmosenv.2011.12.019 |
|
Smith T L, Benjamin S G, Gutman S I, et al, 2007, Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle, Mon Wea Rev, 135(8): 2914-2930. DOI:10.1175/MWR3436.1 |
Strandberg J, Hobiger T, Haas R, 2016, Improving GNSS-R sea level determination through inverse modeling of SNR data, Radio Sci, 51(8): 1286-1296. DOI:10.1002/2016RS006057 |
Teunissen P J G, Montenbruck O, 2017, Handbook of Global Navigation Satellite Systems, Cham:Springer: 1-1327. |
Vey S, Dietrich R, Fritsche M, et al, 2009, On the homogeneity and interpretation of precipitable water time series derived from global GPS observations, J Geophys Res, 114(D10): D10101. DOI:10.1029/2008JD010415 |
Von Engeln A, Healy S, Marquardt C, et al, 2009, Validation of operational GRAS radio occultation data, Geophys Res Lett, 36(17): L17809. DOI:10.1029/2009GL039968 |
Wan W, Larson K M, Small E E, et al, 2015, Using geodetic GPS receivers to measure vegetation water content, GPS Solut, 19(2): 237-248. DOI:10.1007/s10291-014-0383-7 |
Wang M H, Wang J X, Bock Y, et al, 2019, Dynamic mapping of the movement of landfalling atmospheric rivers over Southern California with GPS data, Geophys Res Lett, 46(6): 3551-3559. DOI:10.1029/2018GL081318 |
Wilson B D, Mannucci A J, 1993, Instrumental biases in ionospheric measurements derived from GPS data. In:Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City: 1343-1351. |
Wulfmeyer V, Hardesty R M, Turner D D, et al, 2015, A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev Geophys, 53(3): 819-895. DOI:10.1002/2014RG000476 |
Xiao X X, Zhang T J, Zhong X Y, et al, 2018, Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data, Remote Sens Environ, 210: 48-64. DOI:10.1016/j.rse.2018.03.008 |
Zhang W X, Lou Y D, Cao Y C, et al, 2019, Corrections of radiosonde-based precipitable water using ground-based GPS and applications on historical radiosonde data over China, J Geophys Res, 124(6): 3208-3222. DOI:10.1029/2018JD029662 |
Zhang W X, Lou Y D, Haase J S, et al, 2017, The Use of Ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015, J Climate, 30(19): 7643-7667. DOI:10.1175/JCLI-D-16-0591.1 |
Zhang W X, Lou Y D, Huang J F, et al, 2018, Multiscale variations of precipitable water over China based on 1999-2015 ground-based GPS observations and evaluations of reanalysis products, J Climate, 31(3): 945-962. DOI:10.1175/JCLI-D-17-0419.1 |
Zhao T B, Dai A G, Wang J H, 2012, Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset, J Climate, 25(13): 4549-4567. DOI:10.1175/JCLI-D-11-00557.1 |
Zhou W, Liu L L, Huang L K, et al, 2019, A new GPS SNR-based combination approach for land surface snow depth monitoring, Sci Rep, 9(1): 3814. DOI:10.1038/s41598-019-40456-2 |
Zus F, Wickert J, Bauer H S, et al, 2011, Experiments of GPS slant path data assimilation with an advanced MM54DVAR system, Meteor Z, 20(2): 173-184. DOI:10.1127/0941-2948/2011/0232 |
Zus F, Dick G, Heise S, et al, 2015, A forward operator and its adjoint for GPS slant total delays, Radio Sci, 50(5): 393-405. DOI:10.1002/2014RS005584 |