2017年3月渤海地震序列微震检测与发震构造分析
CSTR:
作者:
基金项目:

地震科技星火计划(XH21002Y)、天津市科技重大专项与工程(18ZXAQSF00110)和国家自然科学基金(41604053)共同资助


Microseismic Detection and Seismogenic Structure Analysis for Bohai Earthquake Sequence in March 2017
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    地震序列发震构造研究是区域地震活动性和地震危险性分析的重要基础。2017年3月渤海海域发生地震序列活动,该序列发生在郯城-庐江断裂带与张家口-渤海地震带的交汇部位,区域构造较为复杂。然而在渤海海域,连续运行的固定地震监测仪器难以布设,导致地震监测能力相对较弱。本文首先采用模板匹配方法对序列遗漏地震进行检测,再使用波形互相关震相检测进行震相校正,基于校正后的震相到时数据对序列进行精定位,并计算序列中2次最大地震的震源机制解。通过计算共检测到目录遗漏地震32个,约为台网目录中地震数量的1.8倍。根据波形互相关聚类分析发现渤海地震序列可分为2组,一组为ML4.4地震及其余震序列,一组为最大震级ML3.5的震群,另有一个ML1.6地震与其他地震波形相似度较低,可能为一个孤立的地震事件。精定位和震源机制结果显示,2组地震均为NE走向,ML4.4地震发生在低倾角正断层,ML3.5地震发生在高倾角走滑断层。最后结合区域地质构造相关研究成果,认为ML4.4地震及其余震序列发震构造为渤中凹陷内NE向低倾角的伸展性正断层,ML3.5震群发震构造为NE向倾角较陡的次级走滑断层。

    Abstract:

    The study of seismogenic structure of earthquake sequence is an important basis for regional seismic activity and seismic risk analysis. In March 2017,an earthquake sequence occurred occurred at the intersection of Tancheng-Lujiang fault zone and Zhangjiakou-Bohai seismic zone in Bohai Sea. The regional structure was relatively complex. It is difficult to deploy instruments in Bohai Sea which make the seismic monitoring capability relatively weak. In this paper,we firstly use the matched filter technique to detect the missing earthquakes in the sequence,and then use the waveform cross-correlation phase detection method to correct the P and S phase arrival time. Based on the corrected phase arrival time data,the sequence is precisely relocated. The focal mechanism of two largest earthquakes in the sequence are calculated. A total of 32 missing earthquakes were detected in the catalog,which is about 1.8 times of the number of earthquakes given in the catalog. According to the waveform cross-correlation clustering analysis,it is found that the Bohai earthquake sequence can be divided into two groups,one is mainshock-aftershock sequence of ML4.4 earthquake,another is earthquake swarm of the largest earthquake ML3.5. Moreover,there is a ML1.6 earthquake that has low similarity with other seismic waveforms,which may be an isolated earthquake event. The results of earthquake relocation and focal mechanism show that the two groups of earthquakes are north-east strikes,the ML4.4 earthquake occurred on the low-dip normal fault,and the ML3.5 earthquake occurred on the high-dip strike-slip fault. Finally,combined with relevant research results of geological structure in the study area,it is considered that seismogenic structure of the ML4.4 aftershock sequence is an extensional normal fault with a north-east low dip angle in Bozhong depression,and the seismogenic structure of the ML3.5 earthquake swarm is a secondary strike-slip fault with a north-east steep dip angle.

    参考文献
    曹筠,冉勇康,许汉刚,等,2018. 郯庐断裂带江苏段安丘-莒县断裂全新世活动及其构造意义. 地球物理学报,61(7):2828~2844.
    陈瑛,梁晓峰,闫宏芳,等,2020. 郯庐断裂渤海湾北段地震活动及其指示意义. 地球物理学报,63(7):2566~2578.
    邓起东,冉勇康,杨晓平,等,2007. 中国活动构造图(1︰400万). 北京:地震出版社.
    顾勤平,康清清,丁志峰,等,2020. 郯庐断裂带鲁苏皖段及邻区上地幔顶部Pn波速度与各向异性. 地球物理学报,63(7):2548~2565.
    国家地震局震害防御司,1995. 中国历史强震目录:公元前23世纪-公元1911年. 北京:地震出版社,503~504.
    侯贵廷,2014. 渤海湾盆地地球动力学. 北京:科学出版社,52~57.
    环文林,汪素云,1989. 渤海地震活动特征. 地震研究,12(1):1~10.
    姜金钟,付虹,陈棋福,2016. 位于构造活跃区的小湾水库地震活动特征——基于地震精定位的分析. 地球物理学报,59(7):2468~2485.
    蒋一然,宁杰远,2019. 基于支持向量机的地震体波震相自动识别及到时自动拾取. 地球物理学报,62(1):361~373.
    李健,王晓明,张英海,等,2020. 基于深度卷积神经网络的地震震相拾取方法研究. 地球物理学报,63(4):1591~1606.
    刘希强,周彦文,曲均浩,等,2009. 应用单台垂向记录进行区域地震事件实时检测和直达P波初动自动识别. 地震学报,31(3):260~271.
    陆克政,漆家福,戴俊生,等,1997. 渤海湾新生代含油气盆地构造模式. 北京:地质出版社,101~106.
    束沛镒,李幼铭,铁安,等,1983. 利用远震P波波形反演渤海地震的震源参数. 地球物理学报,26(1):31-38.
    童亨茂,2003. 渤海湾盆地张巨河复杂断块区平面砂箱模拟实验及其启示. 地质论评,49(3):305-310.
    王清东,朱良保,苏有锦,等,2015. 2012年9月7日彝良地震及余震序列双差定位研究. 地球物理学报,58(9):3205~3221.
    汪晟,胥颐,孟晓春,2017. 渤海海峡及周边区域地壳结构的层析成像特征. 地球物理学报,60(1):112~122.
    王伟涛,王宝善,2012. 基于聚类分析的多尺度相似地震快速识别方法及其在汶川地震东北端余震序列分析中的应用. 地球物理学报,55(6):1952~1962.
    王小娜,叶秀薇,黄元敏,等,2019. 2018年11月26日台湾海峡MS6.2地震发震构造研究. 地球物理学报,62(12):4673~4683.
    吴梦羽,毛淑娟,宁杰远,等,2018. 基于模板识别方法探测断层结构. 北京大学学报(自然科学版),54(4):730~738.
    谢卓娟,吕悦军,彭艳菊,等,2008. 渤海海域地震震源深度的分布特征. 震灾防御技术,3(3):311~320.
    徐锡伟,吴卫民,张先康,2002. 首都圈地区地壳最新构造变动与地震. 北京:科学出版社,9~10.
    易桂喜,龙锋,梁明剑,等,2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析. 地球物理学报,62(9):3432~3447.
    于子叶,储日升,盛敏汉,2018. 深度神经网络拾取地震P和S波到时. 地球物理学报,61(12):4873~4886.
    张成科,张先康,赵金仁,等,2002. 渤海湾及其邻区壳幔速度结构研究与综述. 地震学报,24(4):428~435.
    赵明,陈石,房立华,等,2019a. 基于U形卷积神经网络的震相识别与到时拾取方法研究. 地球物理学报,62(8):3034~3042.
    赵明,陈石,Yuen D,2019b. 基于深度学习卷积神经网络的地震波形自动分类与识别. 地球物理学报,62(1):374~382.
    赵燕来,孙岩昧,梅世蓉,1993. 渤海地区地震参数的修定. 中国地震,9(2):129~137.
    周斌,张英凯,李继训,2000. 渤海及邻区地震地质、地球物理场和地震活动特征. 西北地震学报,22(3):333~337.
    周蕙兰,吉连祥,魏东平,等,1989. 多台波形确定震源深度的t1/2minVmax方法及1969年渤海大震初始破裂点的深度——渤海地震研究(二). 中国地震,(1):35~39.
    Allen R E,1978. Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am,68(5):1521~1532.
    Beaucé E,Frank W B,Romanenko A,2017. Fast matched filter(FMF):an efficient seismic matched-filter search for both CPU and GPU architectures. Seismol Res Lett,89(1):165~172.
    Brodsky E E,2019. The importance of studying small earthquakes. Science,364(6442):736~737.
    Earle P S,Shearer P M,1994. Characterization of global seismograms using an automatic-picking algorithm. Bull Seismol Soc Am,84(2):366~376.
    Frank W B,Abercrombie R E,2018. Adapting the matched-filter search to a wide-aperture network:An aftershock sequence and an earthquake swarm in Connecticut. Bull Seismol Soc Am,108(1):524~532.
    Hardebeck J L,2013. Geometry and earthquake potential of the shoreline fault,Central California. Bull Seismol Soc Am,103(1):447~462.
    Kato A,Obara K,Igarashi T,et al,2012. Propagation of slow slip leading up to the 2011 MW9.0 Tohoku-Oki earthquake. Science,335(6069):705~708.
    Li C Y,Peng Z G,Yao D D,et al,2018. Abundant aftershock sequence of the 2015 MW7.5 Hindu Kush intermediate-depth earthquake. Geophys J Int,213(2):1121~1134.
    Long F,Wen X Z,Ruan X,et al,2015. A more accurate relocation of the 2013 MS7.0 Lushan,Sichuan,China,earthquake sequence,and the seismogenic structure analysis. J Seismol,19(3):653~665.
    Peng Z G,Zhao P,2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat Geosci,2(12):877~881.
    Perol T,Gharbi M,Denolle M,2018. Convolutional neural network for earthquake detection and location. Sci Adv,4(2):e1700578.
    Ross Z E,Trugman D T,Hauksson E,et al,2019. Searching for hidden earthquakes in Southern California. Science,364(6442):767~771.
    Ross Z E,Cochran E S,Trugman D T,et al,2020. 3D fault architecture controls the dynamism of earthquake swarms. Science,368(6497):1357~1361.
    Ruiz S,Metois M,Fuenzalida A,et al,2014. Intense foreshocks and a slow slip event preceded the 2014 Iquique MW8.1 earthquake. Science,345(6201):1165~1169.
    Schaff D,2010. Improvements to detection capability by cross-correlating for similar events:a case study of the 1999 Xiuyan,China,sequence and synthetic sensitivity tests. Geophys J Int,180(2):829~846.
    Sianipar D,2020. Immediate foreshocks activity preceding the 2018 MW7.5 Palu earthquake in Sulawesi,Indonesia. Pure Appl Geophys,177(7):2421~2436.
    Skoumal R J,Brudzinski M R,Currie B S,et al,2014. Optimizing multi-station earthquake template matching through re-examination of the Youngstown,Ohio,sequence. Earth Planet Sci Lett,405:274~280.
    Waldhauser F,Ellsworth W L,2000. A double-difference earthquake location algorithm:method and application to the northern Hayward Fault,California. Bull Seismol Soc Am,90(6):1353~1368.
    Warren-Smith E,Fry B,Kaneko Y,et al,2018. Foreshocks and delayed triggering of the 2016 MW7.1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the MW7.8 kaikoura earthquake,New Zealand. Earth Planet Sci Lett,482:265~276.
    Wessel P,Smith W H F,1995. New version of the Generic Mapping Tools released. Eos Trans AGU,76:329.
    Wu J,Yao D D,Meng X F,et al,2017. Spatial-temporal evolutions of early aftershocks following the 2013 MW6.6 Lushan earthquake in Sichuan,China. J Geophys Res:Solid Earth,122(4):2873~2889.
    Xue L,Bürgmann R,Shelly D R,et al,2018. Kinematics of the 2015 San Ramon,California earthquake swarm:Implications for fault zone structure and driving mechanisms. Earth Planet Sci Lett,489:135~144.
    Yao D D,Huang Y H,Peng Z G,et al,2020. Detailed investigation of the foreshock sequence of the 2010 MW7.2 El Mayor-Cucapah Earthquake. J Geophys Res:Solid Earth,125(6):e2019JB019076.
    Yoon C E,O'Reilly O,Bergen K J,et al,2015. Earthquake detection through computationally efficient similarity search. Sci Adv,1(11):e1501057.
    Yoon C E,Yoshimitsu N,Ellsworth W L,et al,2019. Foreshocks and mainshock nucleation of the 1999 MW7.1 Hector Mine,California,earthquake. J Geophys Res:Solid Earth,124(2):1569-1582.
    Zhang M,Wen L X,2015. An effective method for small event detection:Match and locate(M&L). Geophys J Int,200(3):1523~1537.
    Zhu L P,Helmberger D V,1996. Intermediate depth earthquakes beneath the India-Tibet Collision Zone. Geophys Res Lett,23(5):435~438.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马婷,邓莉,王晓山,宋程,谭毅培.2017年3月渤海地震序列微震检测与发震构造分析[J].中国地震,2021,37(2):415-429

复制
分享
文章指标
  • 点击次数:694
  • 下载次数: 1153
  • HTML阅读次数: 548
  • 引用次数: 0
历史
  • 收稿日期:2020-08-18
  • 最后修改日期:2021-03-17
  • 在线发布日期: 2021-08-31
文章二维码
您是第2916417位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!