滇西南地区地壳S波速度结构反演及强震孕震环境分析
CSTR:
作者:
中图分类号:

P315

基金项目:

云南省地震局科技人员传帮带培养项目(CQ3-2021004)、云南省地震局地震科技专项基金(2023ZX01)和中国地震局地震科技星火计划项目(XH23034YA)共同资助


Inversion of Crustal S-wave Velocity Structure and Analysis of Seismogenic Environment of Strong Earthquakes in Southwestern Yunnan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于滇西南地区31个宽频带地震台站记录的远震三分量波形数据,提取径向P波接收函数,以“中国地震科学实验场地区地壳剪切波速模型”为初始模型,进行精细化结构反演(垂向精度达2km级),并采用Bootstrap重采样技术进行统计和评估,获取了各台站下方的S波速度结构,结合地壳厚度、泊松比分布,对滇西南地区的地壳深部结构及强震孕震环境进行研究。结果表明:①研究区地壳S波速度分布在横向和垂向上均存在明显的非均匀特性。在中上地壳0~20km深度范围内存在明显且连续的低速层,平均厚度约15km,最大厚度达20km。在中下地壳20~28km深度范围内局部区域存在明显的低速层(厚度约8km),主要分布在普文断裂北端至阿墨江断裂中部区域(23°N附近),另外,在红河断裂附近和澜沧江断裂北部的局部区域也有分布; ②从孕震环境来看,景谷 MS6.6 和 MS5.8、墨江 MS5.9 地震均发生在中上地壳低速层内,老挝 MS6.0 地震发生在高、低速度的过渡区域。滇西南地区新生破裂带较为发育,地震波速的减小可能与地壳断裂或微裂隙中有流体的存在有关,研究区NW向新生破裂带的存在以及流体的长期作用,为带内高应变的突然释放提供了条件。另外,4个地震均发生在泊松比变化的高梯度带上,且地震发生处地壳厚度变化均较大。地壳厚度、泊松比变化剧烈的地区,地壳物质组成差异明显,壳内应变易于积累,有利于强震的诱发。

    Abstract:

    Based on the teleseismic three component waveform data recorded by 31 broadband seismic stations in southwestern Yunnan,the radial P-wave receiver function is extracted,and the “crustal shear wave velocity model of China Seismic Science Experimental Field” is taken as the initial model to carry out refined structural inversion(vertical accuracy up to 2km),and Bootstrap resampling technology is used for statistics and evaluation,so as to obtain the S-wave velocity structure under each station,combined with the crustal thickness and Poisson's ratio distribution,The deep crustal structure and the seismogenic environment of strong earthquakes in southwest Yunnan are studied. The results show that:① The crustal S wave velocity distribution in the study area has obvious non-uniformity in both horizontal and vertical directions. There is an obvious and continuous low velocity layer within the depth range of 0~20km in the middle and upper crust,with an average thickness of about 15km and a maximum thickness of 20km. There is an obvious low velocity layer(about 8km thick)in local areas within the depth range of 20~28km in the middle and lower crust,which is mainly distributed in the area from the north section of Puwen Fault to the middle section of Amo River fault(around 23° N). In addition,such velocity layer is also found in local areas near the Honghe fault and north of Lancang River fault. ② From the perspective of seismogenic environment,Jinggu MS6.6 and MS5.8,Mojiang MS5.9 earthquakes occurred in the low velocity layer of the middle and upper crust,and Laos MS6.0 earthquake occurred in the transition region of high and low velocities. The Neogenic Fault zones are relatively developed in southwest Yunnan,and the reduction of seismic wave velocity may be related to the presence of fluids in crustal fractures or microcracks. The existence of NW trending Neogenic fault zones and the long-term effect of fluids in the study area prepare conditions for the sudden release of high strain in the zone. In addition,the four earthquakes all occurred in the high gradient zone of Poisson's ratio change,and the crustal thickness at the location where the earthquake occurred changed greatly. In areas with drastic changes in crustal thickness and Poisson's ratio,the composition of crustal materials is significantly different,and the crustal strain is easy to accumulate,which is conducive to the induction of strong earthquakes.

    参考文献
    陈佳,高琼,王军,等. 2019. 利用接收函数研究程海断裂带莫霍面深度和地壳内S波速度结构特征. 地震,39(1):72~80.
    胡家富,苏有锦,朱雄关,等. 2003. 云南的地壳S波速度与泊松比结构及其意义. 中国科学:(D辑),33(8):714~722.
    雷建设,赵大鹏,徐锡伟,等. 2018. 龙门山断裂带深部结构与2008年汶川地震发震机理. 科学通报,63(19):1906~1916.
    李聪,雷建设. 2014. 滇西南地区地壳速度结构的区域波形反演. 科学通报,59(34):3398~3419.
    李海艳,蔡辉腾,金星,等. 2021. 利用远震P波接收函数研究中国福建地区地壳厚度和泊松比. 地球物理学报,64(3):805~822.
    李建有,石宝文,徐晓雅,等. 2018. 利用远震接收函数探测四川盆地及周边地区的地壳结构. 地球物理学报,61(7):2719~2735.
    潘纪顺,李朋辉,段永红,等. 2021. 华北克拉通中西部地区的地壳结构研究. 地震地质,43(5):1269~1291.
    屈念念,李家斌,朱大友. 2018. 滇西南断裂性质及其与成矿带的关系. 地质科技情报,37(6):173~180.
    史鹏亮,杨天南,梁明娟,等. 2015. 三江构造带新生代变形构造的时-空变化:研究综述及新数据. 岩石学报,31(11):3331~3352.
    苏有锦,秦嘉政. 2001. 川滇地区强地震活动与区域新构造运动的关系. 中国地震,17(1):24~34.
    王兴臣,丁志峰,武岩,等. 2015. 鲁甸 MS6.5 地震震源区地壳结构及孕震环境研究. 地球物理学报,58(11):4031~4040.
    韦伟,孙若昧,石耀霖. 2010. 青藏高原东南缘地震层析成像及汶川地震成因探讨. 中国科学:地球科学,40(7):831~839.
    徐佩芬,李世豪,凌甦群,等. 2013. 利用SPAC法估算地壳S波速度结构. 地球物理学报,56(11):3846~3854.
    张天继. 2017. 腾冲及周边地区地震活动性与地壳结构特征. 硕士学位论文. 昆明:云南大学,29~30.
    张天继,金明培,刘自凤,等. 2020. 滇西北地区地壳厚度与泊松比分布及其意义. 地震研究,43(1):10~18.
    郑晨,丁志峰,宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构. 地球物理学报,59(9):3223~3236.
    Bao X W,Sun X X,Xu M J,et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet Sci Lett,415:16~24.
    Efron B. 1979. Bootstrap methods:another look at the jackknife. The Annals of Statistics,7(1):1~26.
    Ji S C,Wang Q,Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics,463(1~4):15~30.
    Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves. J Geophys Res Solid Earth,84(B9):4749~4762.
    Lei J S,Zhao D P,Su Y J. 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J Geophys Res Solid Earth,114(B5):B05302.
    Lei J S,Zhao D P,Xu X W,et al. 2009b. Is there a big mantle wedge under eastern Tibet?. Phys Earth Planet In,292: 100~113.
    Lei J S,Zhao D P. 2016. Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet. Geochem Geophys Geosyst,17(5):1861~1884.
    Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am,89(5):1395~1400.
    Liu Q Y,Van Der Hilst R D,Li Y,et al. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat Geosci,7(5):361~365.
    Liu Y,Yao H J,Zhang H J,et al. 2021. The community velocity model V.1.0 of southwest China,constructed from joint body- and surface-wave travel-time tomography. Seismol Res Lett,92(5):2972~2987.
    Sun X X,Bao X W,Xu M J,et al. 2014. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion. Geophys Res Lett,41(5):1479~1484.
    Yao H J,Beghein C,Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophys J Int,173(1):205~219.
    Zandt G,Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature,374(6518):152~154.
    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res:Solid Earth,105(B2):2969~2980.
    引证文献
引用本文

杨建文,金明培,叶泵,茶文剑,张天继.滇西南地区地壳S波速度结构反演及强震孕震环境分析[J].中国地震,2023,39(3):543-555

复制
分享
文章指标
  • 点击次数:136
  • 下载次数: 610
  • HTML阅读次数: 290
  • 引用次数: 0
历史
  • 收稿日期:2022-08-04
  • 最后修改日期:2023-02-06
  • 在线发布日期: 2023-12-12
  • 出版日期: 2023-09-15
文章二维码
您是第2873083位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!