基于Coulomb-ETAS混合模型的强余震时空发生率预测及效能评估
作者:
中图分类号:

P315

基金项目:

地震预测开放基金(XH23072D)、国家自然科学基金(42404079)、中国地震局震情跟踪定向工作任务(2024010111)、天津市地震局局内课题(ZD202402)共同资助


Forecasting and Effectiveness Evaluation of Spatial-temporal Occurrence Rate of Strong Aftershock Based on Coulomb-ETAS Hybrid Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [82]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为考察震后早期阶段混合模型的优势及实际预测效能,提升震后早期强余震时空预测的准确性,构建可操作的地震预测研究工作模型基础,选择能够较好反映震后空间应力分布的库仑应力变化和反映余震序列衰减且拟合效果较好的ETAS模型,构建Coulomb-ETAS混合模型。此模型依据强余震大多发生在应力加载区的实际情况,利用混合模型学习期间加载区事件的发生比例,将预测率从抑制区重新分配到加载区。以2021—2022年发生的云南漾濞6.5级、青海玛多7.4级、青海门源6.9级和四川泸定6.8级4次6.0级以上强震为例,对构建的混合模型进行检验和评估,并与单一的ETAS模型、C-RS模型进行对比。研究结果表明,3个模型在震后早期阶段对强余震均表现出相对较好的预测效果,呈现出与实际结果类似的衰减特性,仅有较少的预测失效现象。在频次滑动预测上,ETAS和Coulomb-ETAS模型优于C-RS模型,统计模型优势相对比较显著; 在空间发生率预测上,Coulomb-ETAS模型优于ETAS模型,认为库仑应力分布的混合模型能够降低虚报率,进而提高空间预测的准确性。因此,从4次震例上看,该混合模型优于单一的统计模型和物理模型,能够较好地适用于主震后的强余震时空预测,也可为开展多个模型混合及强余震预测之外的地震预测业务应用场景提供参考。

    Abstract:

    This study aims to investigate the advantages and actual forecast efficiency of the hybrid model in the early stage after the earthquake,improve the accuracy of strong aftershocks space-time forecast,so as to provide a model basis for the construction of operational earthquake forecasting research. We have developed the Coulomb-ETAS hybrid model,capitalizing on the Coulomb failure stress change to delineate the spatial stress distribution subsequent to an earthquake,and the ETAS model to characterize the decay pattern of aftershock sequences,recognized for its superior fit. The model's premise is anchored in the observation that strong aftershocks predominantly emerge in regions of stress concentration. It recalibrates the forecast probabilities,shifting emphasis from areas of stress release to those of stress accumulation,by leveraging the event occurrence ratios within the stress-loading regions during the model's training phase. The hybrid model's performance was rigorously tested and evaluated using data from four significant earthquakes(M≥6.0) in mainland China from 2021 to 2022:the Yunnan Yangbi MS6.5,Qinghai Maduo MS7.4,Qinghai Menyuan MS6.9,and Sichuan Luding MS6.8 earthquakes. These instances served to benchmark the hybrid model against both the standalone ETAS model and the C-RS model. Our findings indicate that all three models demonstrate commendable predictive performance for strong aftershocks in the post-earthquake phase,closely mirroring the observed decay characteristics with minimal predictive discrepancies. The Coulomb-ETAS model outperforms the C-RS model in frequency sliding forecasts,underscoring the pronounced advantage of incorporating statistical methodologies. Furthermore,it surpasses the ETAS model in spatial occurrence rate forecasting by integrating Coulomb stress,which effectively diminishes the rate of false alarms and augments the precision of spatial predictions. The comparative analysis across the four earthquake cases suggests that the hybrid model surpasses both the singular statistical and physical models in terms of spatio-temporal forecasting of strong aftershocks. It is well-suited for application post-mainshock and offers valuable insights for the integration of multiple models and the expansion of earthquake forecasting applications beyond the scope of strong aftershocks.

    参考文献
    郝平,傅征祥,田勤俭,等. 2004. 昆仑山口西8.1级地震强余震库仑破裂应力触发研究. 地震学报,26(1):30~37.
    贾若,蒋海昆. 2014. 基于同震库仑应力变化的汶川地震余震频次研究. 中国地震,30(1):74~90.
    贾若,蒋海昆,康建红,等. 2019. 基于速率-状态依从摩擦定律的前郭震群余震活动率及模型参数相关性研究. 中国地震,35(3):431~444.
    蒋长胜,吴忠良. 2011. 2010年玉树 MS7.1 地震前的中长期加速矩释放(AMR)问题. 地球物理学报,54(6):1501~1510.
    蒋长胜,吴忠良,尹凤玲,等. 2015. 余震的序列参数稳定性和余震短期发生率预测效能的连续评估——以2014年云南鲁甸6.5级地震为例. 地球物理学报,58(11):4163~4173.
    蒋长胜,庄建仓. 2010. 基于时-空ETAS模型给出的川滇地区背景地震活动和强震潜在危险区. 地球物理学报,53(2):305~317.
    蒋长胜,庄建仓,吴忠良,等. 2017. 两种短期概率预测模型在2017年九寨沟7.0级地震中的应用和比较研究. 地球物理学报,60(10):4132~4144.
    蒋海昆,吴琼,宋金,等. 2012. 双层黏弹介质模型条件下地震应力扰动的时空特征. 地球物理学报,55(4):1240~1248.
    靳志同,万永革,刘兆才,等. 2019. 2017年九寨沟 MS7.0 地震对周围地区的静态应力影响. 地球物理学报,62(4):1282~1299.
    李瑶,万永革,靳志同,等. 2017. 新疆精河MW6.3地震产生的静态应力变化研究. 中国地震,33(4):671~681.
    刘桂萍,傅征祥. 2002. 1973年炉霍大地震(MS=7.6)最大余震(MS=6.3)的库仑破裂应力触发. 中国地震,18(2):175~182.
    万永革. 2019. 同一地震多个震源机制中心解的确定. 地球物理学报,62(12):4718~4728.
    万永革,沈正康,曾跃华,等. 2007. 青藏高原东北部的库仑应力积累演化对大地震发生的影响. 地震学报,29(2):115~129.
    万永革,沈正康,曾跃华,等. 2008. 唐山地震序列应力触发的粘弹性力学模型研究. 地震学报,30(6):581~593.
    万永革,吴忠良,周公威,等. 2002. 地震应力触发研究. 地震学报,24(5):533~551.
    Aki K. 1981. A probabilistic synthesis of precursory phenomena. In:Simpson D W,Richards R G. Earthquake Prediction:An International Review. Washington:American Geophysical Union,566~574.
    Bach C,Hainzl S. 2012. Improving empirical aftershock modeling based on additional source information. J Geophys Res:Solid Earth,117(B4):B04312.
    Bi J M,Jiang C S. 2022. Identification and statistical characteristics of foreshock sequences in the North-South seismic belt. J Seismol,26(3):499~512.
    Catalli F,Cocco M,Console R,et al. 2008. Modeling seismicity rate changes during the 1997 Umbria-Marche sequence(central Italy) through a rate- and state-dependent model. J Geophys Res:Solid Earth,113(B11):B11301.
    Cattania C,Khalid F. 2016. A parallel code to calculate rate-state seismicity evolution induced by time dependent,heterogeneous Coulomb stress changes. Comput Geosci,94:48~55.
    Cattania C,Werner M J,Marzocchi W,et al. 2018. The forecasting skill of physics-based seismicity models during the 2010-2012 Canterbury,New Zealand,earthquake sequence. Seismol Res Lett,89(4):1238~1250.
    Cocco M,Hainzl S,Catalli F,et al. 2010. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response. J Geophys Res:Solid Earth,115(B5):B05307.
    Console R,Jackson D D,Kagan Y Y. 2010. Using the ETAS model for catalog declustering and seismic background assessment. Pure Appl Geophys,167(6~7):819~830.
    Dahm T,Hainzl S. 2022. A coulomb stress response model for time-dependent earthquake forecasts. J Geophys Res:Solid Earth,127(9):e2022JB024443.
    Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res:Solid Earth,99(B2):2601~2618.
    Dieterich J H. 2007. Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence. Treatise Geophys,4:107~129.
    Dieterich J H. 1979. Modeling of rock friction:1. Experimental results and constitutive equations. J Geophys Res:Solid Earth,84(B5):2161~2168.
    Gahalaut V K,Rajput S,Kundu B. 2011. Low seismicity in the Bhutan Himalaya and the stress shadow of the 1897 Shillong Plateau earthquake. Phys Earth Planet Inter,186(3~4):97~102.
    García D,Wald D J,Hearne M G. 2012. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection. Bull Seismol Soc Am,102(1):185~203.
    Gardner J K,Knopoff L. 1974. Is the sequence of earthquakes in Southern California,with aftershocks removed,Poissonian?. Bull Seismol Soc Am,64(5):1363~1367.
    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California. Bull Seismol Soc Am,34(4):185~188.
    Hainzl S,Brietzke G B,Zöller G. 2010. Quantitative earthquake forecasts resulting from static stress triggering. J Geophys Res:Solid Earth,115(B11):B11311.
    Hainzl S,Enescu B,Cocco M,et al. 2009. Aftershock modeling based on uncertain stress calculations. J Geophys Res:Solid Earth,114(B5):B05309.
    Hardebeck J L. 2021. Spatial clustering of aftershocks impacts the performance of physics-based earthquake forecasting models. J Geophys Res:Solid Earth,126(2):e2020JB020824.
    Harris R A. 1998. Introduction to special section:stress triggers,stress shadows,and implications for seismic hazard. J Geophys Res:Solid Earth,103(B10):24347~24358.
    Helmstetter A,Kagan Y Y,Jackson D D. 2006. Comparison of short-term and time-independent earthquake forecast models for southern California. Bull Seismol Soc Am,96(1):90~106.
    Helmstetter A,Sornette D. 2003. Foreshocks explained by cascades of triggered seismicity. J Geophys Res:Solid Earth,108(B10):2457.
    Huang Q H. 2006. Search for reliable precursors:a case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake. J Geophys Res:Solid Earth,111(B4):B04301.
    Imoto M. 2007. Information gain of a model based on multidisciplinary observations with correlations. J Geophys Res:Solid Earth,112(B5):B05306.
    Iwata T. 2008. Low detection capability of global earthquakes after the occurrence of large earthquakes:investigation of the Harvard CMT catalogue. Geophys J Int,174(3):849~856.
    Japan Meteorological Agency(JMA). 2009. The Iwate-Miyagi Nairiku earthquake in 2008. Tokyo:JMA,101~131.
    Jia K,Zhou S Y,Zhuang J C,et al. 2014. Possibility of the independence between the 2013 Lushan earthquake and the 2008 Wenchuan earthquake on Longmen Shan Fault,Sichuan,China. Seismol Res Lett,85(1):60~67.
    Jia K,Zhou S Y,Zhuang J C,et al. 2021. Stress transfer along the western boundary of the Bayan Har Block on the Tibet Plateau from the 2008 to 2020 Yutian earthquake sequence in China. Geophys Res Lett,48(15):e2021GL094125.
    Kagan Y Y,Jackson D D. 1995. New seismic gap hypothesis:five years after. J Geophys Res:Solid Earth,100(B3):3943~3959.
    King G C P,Stein R S,Lin J. 1994. Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am,84(3):935~953.
    Mancini S,Segou M,Werner M J,et al. 2019. Improving physics-based aftershock forecasts during the 2016-2017 Central Italy earthquake cascade. J Geophys Res:Solid Earth,124(8):8626~8643.
    Marzocchi W,Lombardi A M. 2009. Real-time forecasting following a damaging earthquake. Geophys Res Lett,36(21):L21302.
    McGuire J J,Boettcher M S,Jordan T H. 2005. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature,434(7032):457~461.
    Mesimeri M,Pankow K L. 2022. Revisiting operational aftershock forecasting in the Eastern intermountain West. Seismol Res Lett,93(4):2259~2267.
    Molchan G M. 1991. Structure of optimal strategies in earthquake prediction. Tectonophysics,193(4):267~276.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am,82(2):1018~1040.
    Ogata Y. 1998. Space-time point-process models for earthquake occurrences. Ann Inst Stat Math,50(2):379~402.
    Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc,83(401):9~27.
    Ogata Y. 1989. Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics,169(1~3):159~174.
    Ogata Y,Katsura K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys J Int,113(3):727~738.
    Omori F. 1894. On aftershocks of earthquakes. Journal of the College of Science,Imperial University of Tokyo,7:111~200.
    Page M T,van der Elst N,Hardebeck J,et al. 2016. Three ingredients for improved global aftershock forecasts:tectonic region,time-dependent catalog incompleteness,and intersequence variability. Bull Seismol Soc Am,106(5):2290~2301.
    Papadimitriou E,Gospodinov D,Karakostas V,et al. 2013. Evolution of the vigorous 2006 swarm in Zakynthos(Greece) and probabilities for strong aftershocks occurrence. J Seismol,17(2):735~752.
    Paris G M,Michael A J. 2023. An interactive viewer to improve operational aftershock forecasts. Seismol Res Lett,94(1):473~484.
    Peng Y J,Zhou S Y,Zhuang J C,et al. 2012. An approach to detect the abnormal seismicity increase in Southwestern China triggered co-seismically by 2004 Sumatra MW9.2 earthquake. Geophys J Int,189(3):1734~1740.
    Reasenberg P A,Jones L M. 1989. Earthquake hazard after a mainshock in California. Science,243(4895):1173~1176.
    Reverso T,Steacy S,Marsan D. 2018. A hybrid ETAS-Coulomb approach to forecast spatiotemporal aftershock rates. J Geophys Res:Solid Earth,123(11):9750~9763.
    Ruina A. 1983. Slip instability and state variable friction laws. J Geophys Res:Solid Earth,88(B12):10359~10370.
    Schorlemmer D,Gerstenberger M C,Wiemer S,et al. 2007. Earthquake likelihood model testing. Seismol Res Lett,78(1):17~29.
    Schorlemmer D,Werner M J,Marzocchi W,et al. 2018. The collaboratory for the study of earthquake predictability:achievements and priorities. Seismol Res Lett,89(4):1305~1313.
    Shcherbakov R,Turcotte D L. 2004. A modified form of Bath's law. Bull Seismol Soc Am,94(5):1968~1975.
    Sornette D,Knopoff L,Kagan Y Y,et al. 1996. Rank-ordering statistics of extreme events:application to the distribution of large earthquakes. J Geophys Res:Solid Earth,101(B6):13883~13893.
    Steacy S,Gerstenberger M,Williams C,et al. 2014. A new hybrid Coulomb/statistical model for forecasting aftershock rates. Geophys J Int,196(2):918~923.
    Steacy S,Gomberg J,Cocco M. 2005. Introduction to special section:stress transfer,earthquake triggering,and time-dependent seismic hazard. J Geophys Res:Solid Earth,110(B5):B05S01.
    Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature,402(6762):605~609.
    Toda S,Enescu B. 2011. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth,Planets Space,63(3):171~185.
    Toda S,Stein R S. 2003. Toggling of seismicity by the 1997 kagoshima earthquake couplet:a demonstration of time-dependent stress transfer. J Geophys Res:Solid Earth,108(B12):2567.
    Toda S,Stein R S,Reasenberg P A,et al. 1998. Stress transferred by the 1995 MW=6.9 Kobe,Japan,shock:effect on aftershocks and future earthquake probabilities. J Geophys Res:Solid Earth,103(B10):24543~24565.
    Toda S,Stein R S,Richards-Dinger K,et al. 2005. Forecasting the evolution of seismicity in southern California:animations built on earthquake stress transfer. J Geophys Res:Solid Earth,110(B5):B05S16.
    Utsu T. 1961. A statistical study on the occurrence of aftershocks. Geophys Mag,30:521~605.
    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement. Bull Seismol Soc Am,84(4):974~1002.
    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:examples from Alaska,the western United States,and Japan. Bull Seismol Soc Am,90(4):859~869.
    Zhuang J C. 2011. Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth,Planets Space,63(3):207~216.
    Zhuang J C. 2015. Weighted likelihood estimators for point Processes. Spat Stat,14:166~178.
    Zhuang J C,Chang C P,Ogata Y,et al. 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models. J Geophys Res:Solid Earth,110(B5):B05S18.
    Zhuang J C,Christophersen A,Savage M K,et al. 2008. Differences between spontaneous and triggered earthquakes:their influences on foreshock probabilities. J Geophys Res:Solid Earth,113(B11):B11302.
    Zhuang J C,Ogata Y. 2006. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. Phys Rev E,73(4):046134.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

毕金孟,蒋海昆,宋程.基于Coulomb-ETAS混合模型的强余震时空发生率预测及效能评估[J].中国地震,2024,40(3):532-550

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 106
  • HTML阅读次数: 120
  • 引用次数: 0
历史
  • 收稿日期:2023-07-07
  • 最后修改日期:2023-10-23
  • 在线发布日期: 2024-11-16
文章二维码
您是第2855498位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!