• 首页关于本刊投稿须知期刊订阅编委会
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 655次   下载 726 本文二维码信息
码上扫一扫!
分享到: 微信 更多
唐山台跨断层形变速率阶段性变化及预报效能评估
郑洪艳, 田晓
中国地震局第一监测中心, 天津 300180
摘要:
采用启发式分割算法(BG算法)对唐山台跨断层形变观测时间序列进行均值突变检测。以此为基础,通过计算突变前后子序列均值变化量,探讨唐山台跨断层形变的阶段性变化特征。结合台站及其周围典型震例,分层次统计突变距离发震日的时间间隔,计算虚报率、漏报率和R值,并对唐山台跨断层形变的预报效能进行定量评估。结果显示,唐山台跨断层形变阶段性变化特征显著;各测项突变后对应发生地震的概率均不低于50%,突变距发震日的最短时间间隔自当天到2个月不等;水准的预报效能整体上略优于基线,而断层垂向分量和张压分量的预报效能整体上优于走滑分量。
关键词:  跨断层形变  断层运动三分量  BG算法  阶段性变化  预报效能评估
DOI:
分类号:P315
基金项目:中国地震局“监测、预测、科研”三结合课题(3JH-202001100)、中国地震局震情跟踪课题(20190102)共同资助
Evaluation of Earthquake Prediction Ability from Tangshan Cross-fault Deformation Data by Using the Bernaola-Galvan Algorithm
Zheng Hongyan, Tian Xiao
First Crust Monitoring and Application Center, CEA, Tianjin 300180, China
Abstract:
The Bernaola-Galvan algorithm (BG algorithm) is used to detect the mean mutation of the across-fault movement time series at Tangshan station. Based on this,the characteristics of the stage changes of the cross-fault deformations at Tangshan station are analyzed by calculating the average changes of the subsequences before and after the mutations. Combing with the filtered typical earthquake cases in and around Tangshan station,we quantitatively evaluate the prediction ability on three levels by counting the minimum time interval between the mutations and the earthquakes,and calculating the false alarm rate,the missed alarm rate,and R. The results show that characteristics of the periodic change of the cross-fault deformation at Tangshan station are significant The probability of an earthquake corresponding to the mutations is 50% or more,and the minimum time interval is from the exact day to two months. In summary,we believe that in terms of earthquake prediction,the leveling measurement is better than the baseline observations slightly,while the lateral and the vertical deformation data is better than axial deformation data in the respect of prediction ability.
Key words:  Cross-fault observation  Fault movement component  BG algorithm  Stage change  Evaluation of prediction ability