基于InSAR和GNSS约束的2021年玛多MS7.4地震同震形变场及断层滑动分布
作者:
中图分类号:

P315

基金项目:

青海省重点研发与转化项目计划(2022-SF-138)资助


Coseismic Deformation Field and Fault Slip Distribution of the 2021 Madoi MS7.4 Earthquake from InSAR and GNSS Constraints
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    据中国地震台网测定,2021年5月22日青海省果洛藏族自治州玛多县发生7.4级地震,震中位于青藏高原中部的巴颜喀拉块体,不同于其他7级地震往往多发生在块体边界带上,此次地震是发生于巴颜喀拉块体内部区域的一次强震。本次典型块体内部大地震的发生意味着块体的相互作用加剧,引起了学者们广泛关注。本文利用GNSS和Sentinel-1 InSAR数据获取了玛多地震的同震形变场,并以此为约束,选用弹性半无限位错模型,反演了玛多地震的同震位错分布。升、降轨InSAR同震形变场显示玛多地震造成了显著的地表形变,升轨最大LOS向位移达1.1m,降轨最大LOS向位移达0.9m。研究结果表明,该地震造成了明显的长度约160km的地表破裂。断层面位错分布反演结果显示,发震断层由主断层和分支断层组成,主断层倾向北,倾角85°,平均滑动角-11.25°,分支断层倾向南,倾角68°,平均滑动角-11.39°。同震优势滑动分布区域主要分布在地下0~17km深度范围,最大滑动量约为4.34m,位于断层东侧东草阿龙段,反演得到的矩震级为MW7.4。发震断层破裂多个凹凸体,且该地震是一次不对称的双侧破裂事件。综合地球物理及地质资料分析认为,主发震断裂为靠近巴颜喀拉块体北边界的昆仑山口—江错断裂。震中区域形变结果显示,此次玛多地震增强了巴颜喀拉块体在东北部地区挤压应力积累的特征,表现在东昆仑断裂玛沁段应力有所增加,值得后续深入研究和关注。

    Abstract:

    According to the China Earthquake Network,a magnitude 7.4 earthquake struck Madoi County in the Guoluo Tibetan Autonomous Prefecture of Qinghai Province on May 22, 2021. The epicenter was located within the Bayan Har block,situated in the central region of the Tibetan Plateau. Unlike typical magnitude 7 earthquakes,which generally occur along block boundary zones,this was a significant intra-block event,prompting widespread interest in whether the earthquake indicates block disintegration or heightened stress accumulation within the block. In response to this,our study utilized GNSS and Sentinel-1 InSAR data to calculate the isoseismic deformation field of the Madoi earthquake. This data served as a constraint in inverting the subsurface dislocation distribution along the seismogenic fault using an elastic semi-infinite dislocation model. The InSAR coseismic deformation fields revealed substantial surface deformation,with maximum line-of-sight(LOS) displacements of 1.1 meters on the ascending track and 0.9m on the descending track. Our findings indicate that the earthquake produced a significant surface rupture stretching approximately 160km,extending from the Changma River in the east to Lake Ereung in the west. The coseismic slip model results suggest that the seismic fault system comprises a main fault and a secondary fault. The main fault dips northward at an angle of 85° with an average slip angle of -11.25°,while the secondary fault dips southward at an angle of 68° with an average slip angle of -11.39°. The seismic rupture was primarily concentrated between 0 and 17km depth,with a maximum slip of approximately 4.34 meters. The moment magnitude derived from the inversion was MW7.4. The rupture area contained four asperities and represented an asymmetric bilateral rupture event. Based on aftershock relocations,field investigations,and tectonic background analysis,we determined that the primary seismic rupture occurred along the Kunlunshankou-Jiangcuo fault. Furthermore,the earthquake significantly increased extrusive stress accumulation in the northeastern Bayan Har block,particularly along the Machin section of the East Kunlun Fault. These findings highlight the need for further in-depth study and monitoring of stress accumulation in the region.

    参考文献
    邓起东. 2007. 中国活动构造图. 北京: 地震出版社.
    邓起东,程绍平,马冀,等. 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报,57(7):2025~2042.
    邓起东,高翔,陈桂华,等. 2010. 青藏高原昆仑—汶川地震系列与巴颜喀喇断块的最新活动. 地学前缘,17(5):163~178.
    邓起东,张培震,冉勇康,等. 2002. 中国活动构造基本特征. 中国科学: 地球科学,32(12):1020~1030.
    甘卫军,沈正康,张培震,等. 2004. 青藏高原地壳水平差异运动的GPS观测研究. 大地测量与地球动力学,24(1):29~35.
    华俊,赵德政,单新建,等. 2021. 2021年青海玛多 MS7.4 地震InSAR的同震形变场、断层滑动分布及其对周边区域的应力扰动. 地震地质,43(3):677~691.
    江在森,马宗晋,张希,等. 2003. GPS初步结果揭示的中国大陆水平应变场与构造变形. 地球物理学报,46(3):352~358.
    李海兵,潘家伟,孙知明,等. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报,95(1):194~213.
    李志才,丁开华,张鹏,等. 2021. GNSS观测的2021年青海玛多地震(MW7.4)同震形变及其滑动分布. 武汉大学学报(信息科学版),46(10):1489~1497.
    李智敏,李文巧,李涛,等. 2021. 2021年5月22日青海玛多 MS7.4 地震的发震构造和地表破裂初步调查. 地震地质,43(3):722~737.
    马玉虎,马辉青. 2013. 巴颜喀拉块体强震活动与2010年玉树7.1级地震的关系. 高原地震,25(1):1~9.
    潘家伟,白明坤,李超,等. 2021. 2021年5月22日青海玛多 MS7.4 地震地表破裂带及发震构造. 地质学报,95(6):1655~1670.
    屈春燕,左荣虎,单新建,等. 2017. 尼泊尔MW7.8地震InSAR同震形变场及断层滑动分布. 地球物理学报,60(1):151~162.
    单新建,屈春燕,龚文瑜,等. 2017. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演. 地球物理学报,60(12):4527—4536.
    屠泓为,汪荣江,刁法启,等. 2016. 运用SDM方法研究2001年昆仑山口西 MS8.1 地震破裂分布:GPS和InSAR联合反演的结果. 地球物理学报,59(6):2103~2112.
    王迪晋,王东振,赵斌,等. 2022. 2021年青海玛多MW7.4地震GNSS同震形变场及其断层滑动分布. 地球物理学报,65(2):537~551.
    王未来,房立华,吴建平,等. 2021. 2021年青海玛多 MS7.4 地震序列精定位研究. 中国科学: 地球科学,51(7):1193~1202.
    王阅兵,李瑜,蔡毅,等. 2022. GNSS观测的2021年5月22日玛多 MS7.4 地震同震位移及其约束反演的滑动破裂分布. 地球物理学报,65(2):523~536.
    伍吉仓,宋鑫友,胡凤鸣,等. 2020. 联合GNSS和InSAR观测位移反演2008年汶川大地震断层位错模型参数. 中国地震,36(4):767~779.
    吴萍萍,常利军,鲁来玉,等. 2022. 2021年青海玛多 MS7.4 地震震源区上地壳三维精细速度结构. 地球物理学报,65(6):2006~2021.
    许力生,陈运泰. 2004. 从全球长周期波形资料反演2001年11月14日昆仑山口地震时空破裂过程. 中国科学: 地球科学,34(3):256~264.
    徐锡伟,于贵华,陈桂华,等. 2007. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析. 地震地质,29(2):201~217.
    徐志国,梁姗姗,张广伟,等. 2021. 2021年5月22日青海玛多 MS7.4 地震发震构造分析. 地球物理学报,64(8):2657~2670.
    颜丙囤,季灵运,蒋锋云,等. 2022. InSAR数据约束的2022年1月8日青海门源 MS6.9 地震发震构造研究. 地震工程学报,44(2):450~457.
    余鹏飞,熊维,陈威,等. 2022. 基于GNSS和InSAR约束的2021年玛多 MS7.4 地震同震滑动分布及应用. 地球物理学报,65(2):509~522.
    张培震,邓起东,张国民,等. 2003. 中国大陆的强震活动与活动地块. 中国科学: 地球科学,33(增刊Ⅰ):12~20.
    张培震,王伟涛,甘卫军,等. 2022. 青藏高原的现今构造变形与地球动力过程. 地质学报,96(10):3297~3313.
    Bai M K,Chevalier M L,Pan J W,et al. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault,eastern Tibet. Geodynamic and seismic hazard implications. Earth Planet Sci Lett,485:19~31.
    Chen G H,Xu X W,Wen X Z,et al. 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe Fault system,eastern Tibetan Plateau. Acta Geol Sin-Engl,90(2):537~554.
    Gan W J,Zhang P Z,Shen Z K,et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res,112:B08416.
    Goldstein R M,Werner C L. 1998. Radar interferogram filtering for geophysical applications. Geophys Res Lett,25(21):4035~4038.
    He L J,Feng G C,Wu X X,et al. 2021. Coseismic and early postseismic slip models of the 2021 MW7.4 Maduo earthquake(western China) estimated by space-based geodetic data. Geophys Res Lett,48(24):e2021GL095860.
    Jin Z Y,Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo(China) earthquake. Geophys Res Lett,48(21):e2021GL095213.
    Jonsson S,Zebker H,Segall P,et al. 2002. Fault slip distribution of the 1999 MW7.1 Hector Mine,California,earthquake,estimated from satellite radar and GPS measurements. Bull Seismol Soc Am,92(4):1377~1389.
    Li C,Xu X,Wen X,et al. 2011. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault,north Tibetan Plateau. Science China Earth Sciences,54(11):1730~1745.
    Lyu M Z,Chen K J,Xue C H,et al. 2022. Overall subshear but locally supershear rupture of the 2021 MW7.4 Maduo earthquake from high-rate GNSS waveforms and three-dimensional InSAR deformation. Tectonophysics,839:229542.
    Pan J W,Li H B,Chevalier M L,et al. 2022. Co-seismic rupture of the 2021,MW7.4 Maduo earthquake(northern Tibet):short-cutting of the Kunlun fault big bend. Earth Planet Sci Lett,594: 117703.
    Wang Q,Zhang P Z,Freymueller J T,et al. 2001. Present-day crustaldeformation in China constrained by global positioning system measurements. Science,294(5542):574~577.
    Wang R J,Diao F Q,Hoechner A. 2013. SDM-a geodetic inversion code incorporating with layered crust structure and curved fault geometry. In:EGU General Assembly 2013. Vienna,Austria:EGU.
    Wang R J,Lorenzo-Martín F,Roth F. 2006. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci,32(4):527~541.
    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement. Bull Seismol Soc Am,84(4):974~1002.
    Wen X Z,Xu X W,Zheng R Z,et al. 2003. Average slip-rate and recent large earthquake ruptures along the Garze-Yushu fault. Sci China Earth Sci,46(2):276~288.
    Zhang P Z,Shen Z,Wang M,et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology,32(9):809~812.
    Zheng A,Yu X W,Qian J Q,et al. 2023. Cascading rupture process of the 2021 Maduo,China earthquake revealed by the joint inversion of seismic and geodetic data. Tectonophysics,849:229732.
    Zhu Y G,Diao F Q,Fu Y C,et al. 2021. Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations. Sci China Earth Sci,64(8):1363~1370.
    相似文献
    引证文献
引用本文

蓝世昊,屠泓为,李智敏,万秀红.基于InSAR和GNSS约束的2021年玛多MS7.4地震同震形变场及断层滑动分布[J].中国地震,2024,40(3):573-585

复制
分享
文章指标
  • 点击次数:60
  • 下载次数: 117
  • HTML阅读次数: 209
  • 引用次数: 0
历史
  • 收稿日期:2023-09-04
  • 最后修改日期:2024-03-17
  • 在线发布日期: 2024-11-16
文章二维码
您是第2934020位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!