四种震相自动检测技术在前震探测方面应用中的对比研究
作者:
作者单位:

中国地震台网中心


A Comparative Study of Four Automatic Phase Detection Techniques in the Application of Foreshock Detection
Author:
Affiliation:

China Earthquake Networks Center

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文采用短长时窗比、多频带滤波、深度学习和模板匹配过滤四种地震信号自动检测方法,分别对2010年4月14日青海玉树M7.1地震、2013年8月31日云南香格里拉、德钦、四川得荣交界M5.9地震和2014年2月12日新疆于田M7.3地震三次具有明显前震信号的地震事件发生前,震中距最近的YUS台、ZOD台和YUT台记录到的数十小时连续波形数据进行处理。探索了四种自动拾取震相算法在前震信号探测方面的应用效果,补充了前震活动信息。通过对比不同检测方法检测结果的漏检率和误检率,提出用深度学习检测结果对短长时窗比、多频带滤波检测结果进行补充验证,结果作为模版进行匹配过滤,同时充分利用GPD对P和S震相的自动识别,有助于完善前震震相信息。

    Abstract:

    This paper employs four automatic detection methods for seismic signals: short-long time window ratio, multi-band filtering, deep learning, and template matching filtering. These methods are applied to process the continuous waveform data recorded by the YUS, ZOD, and YUT stations, which are located closest to the epicenter, for three significant seismic events with clear foreshock signals: the M7.1 earthquake in Yushu, Qinghai on April 14, 2010; the M5.9 earthquake at the junction of Shangri-La, Deqin, and Derong in Yunnan on August 31, 2013; and the M7.3 earthquake in Yutian, Xinjiang on February 12, 2014. The study explores the application effects of the four automatic phase-picking algorithms in detecting foreshock signals, supplementing foreshock activity information. By comparing the missed detection rates and false detection rates of different detection methods, it is proposed to use deep learning detection results to validate and complement the short-long time window ratio and multi-band filtering results. These results will serve as templates for matching and filtering, while also fully utilizing GPD for the automatic identification of P and S phases, which aids in improving foreshock phase information.

    参考文献
    Alen R V. 1978. Automatic eartliquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America,68(5 ): 1521-1532.
    Allen R. 1982. Automatic phase pickers: Their present use and future prospects[ J]? Bulletin of the Seismological Society of America, 72(6) :225-242.
    Baillard, C.,et al., 2014, An automatic kurtosis-based P- and S-phase picker designed for local seismic networks, Bull. Seismol. Soc. Am. 104, (1), 394-409
    Bogiatzis, P., and M. Ishii, 2015, Continuous wavelet decomposition algorithm for automatic detection of compressional- and shear-wave arrival times, Bull. Seismol. Soc. Am. 105(3), 1628-1641
    Bouchou M., 2011, Extended nucleation of the 1999 Mw 7.6 Izmit earthquake, Science 331, (877), 877-880
    Chen C., et al., 2016, PhasePApy: A Robust Pure Python Package for Automatic Identification of Seismic Phases, Seismol. Res. Lett., 87(6), 1384-1306
    Gentili, S., and A. Michelini, 2006, Automatic picking of P and S phases using a neural tree, J. Seismol. 10,(1), 39-63
    Leonard M., and B. T. N. Kennett, 1999, Multi-component autoregressive techniques for the analysis of seismograms, Phys. Earth Planet.In. 113(1), 247-263
    Lomax, A., C. Satriano, and M. Vassallo, 2012, Automatic picker developments and optimization: FilterPicker: A robust, broadband picker for real-time seismic monitoring and earthquake early warning, Seismol.Res. Lett. 83(3): 531-540
    Peng Z G,Zhao P,2009,Migration of early afiershocks following the 2004 Parkfield earthquake,Nature Geoscience,2(12),877-881.
    Ross, Z., E., et al., 2018: Generalized Seismic Phase Detection with Deep Learning, Bull. Seismol. Soc. Am., doi: 10.1785/0120180080
    Vassallo, M. et al.,2012, Automatic picker developments and optimization: A strategy for improving the performances of automatic phase pickers, Seismol. Res. Lett. 83(3), 541-554
    Withers, M.et al.,1998,A comparison of select trigger algorithms for automated global seismic phase and event detection,Bull. Seismol. Soc.Am. 88,(1), 95-106
    李力 等,2018,余震自动识别技术研究进展,地震研究,41(1),1-13
    李璐 等,2017,模版匹配滤波技术在地震数据处理中的应用,中国地震,33 (1), 14-22
    A Comparative Study of Four Automatic Phase Detection Techniques in the Application of Foreshock Detection
    Xuejun Han? Yanlu Ma
    China Earthquakes Networks Center(Seismic open Open Laboratory)
    No.5, Nanheng Str., Sanlihe, Xicheng District, Beijing? 100045
    This paper employs four automatic detection methods for seismic signals: short-long time window ratio, multi-band filtering, deep learning, and template matching filtering. These methods are applied to process the continuous waveform data recorded by the YUS, ZOD, and YUT stations, which are located closest to the epicenter, for three significant seismic events with clear foreshock signals: the M7.1 earthquake in Yushu, Qinghai on April 14, 2010; the M5.9 earthquake at the junction of Shangri-La, Deqin, and Derong in Yunnan on August 31, 2013; and the M7.3 earthquake in Yutian, Xinjiang on February 12, 2014. The study explores the application effects of the four automatic phase-picking algorithms in detecting foreshock signals, supplementing foreshock activity information. By comparing the missed detection rates and false detection rates of different detection methods, it is proposed to use deep learning detection results to validate and complement the short-long time window ratio and multi-band filtering results. These results will serve as templates for matching and filtering, while also fully utilizing GPD for the automatic identification of P and S phases, which aids in improving foreshock phase information.
    Keywords:foreshock? STA/LTA?? FilterPicker? Template matching filtering? deep-learning GPD
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:6
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-31
  • 最后修改日期:2025-05-16
  • 录用日期:2025-05-20
文章二维码
您是第2925910位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!