基于VGG16卷积神经网络模型的川滇地区谱比法场地分类研究
作者:
中图分类号:

P315

基金项目:

地震科技星火计划项目(XH23052C)资助


Site Classification by Spectral Ratio Method Based on VGG16 Convolutional Neural Network Model in Sichuan-Yunnan Region
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    传统的谱比法在地震场地分类中存在一定的主观性和不确定性,引入机器学习算法可以通过大量的样本数据和特征提取方法,提高分类方法的客观性和准确性,为地震工程设计和地震危险性评估提供更可靠的依据。本研究利用川滇地区历史地震的强震台事件波形数据,计算不同场地类别强震动记录的水平和竖向速度反应谱值获取谱比曲线,分析了其在卓越周期、峰值和整体幅值上的特征。引入深度学习算法,整理并生成了川滇地区强震动台站谱比曲线样本集,并将其用作为VGG16卷积神经网络模型的输入数据,训练得到了NEHRP下三类标准场地的概率分布模型。通过特征提取和交叉验证算法,提高了模型的精度和泛化能力。研究所建立的场地分类模型在验证结果中表现良好,对于谱比法场地分类方法的改进和应用具有一定的参考价值。

    Abstract:

    The traditional spectral ratio method for seismic site classification often involves subjectivity and uncertainty. By integrating machine learning algorithms and leveraging large datasets along with feature extraction techniques,the objectivity and accuracy of the classification process can be enhanced,providing a more reliable foundation for seismic engineering design and hazard assessment. In this study,strong-motion waveform data from historical earthquakes in the Sichuan-Yunnan region were used to generate spectral ratio curves by calculating the horizontal and vertical velocity response spectrum values for various site categories. The characteristics of these curves,including predominant period,peak,and overall values,were analyzed. By incorporating deep learning algorithms,a dataset of spectral ratio curves from strong-motion stations in the Sichuan-Yunnan region was compiled and used as input for the VGG16 convolutional neural network(CNN)model. This model was trained to predict the probability distribution of three site categories based on NEHRP standards. The accuracy and generalization ability of the model were further enhanced through feature extraction and cross-validation techniques. The resulting site classification model demonstrated strong performance in validation,offering significant reference value for improving and applying the spectral ratio method in seismic site classification.

    参考文献
    薄景山,李琪,孙强强,等. 2021. 场地分类研究现状及有关问题的讨论. 自然灾害学报,30(3):1~13.
    陈永新. 2015. 基于KiK-net强震动记录对不同土层条件下场地非线性反应的研究. 硕士学位论文. 北京: 中国地震局地球物理研究所.
    郭宗斌,陈其峰,冯恩国,等. 2021. 工程地震场地分类方法研究进展. 内陆地震,35(4):346~353.
    韩红. 2022. 基于深度卷积神经网络的地震相识别. 硕士学位论文. 石家庄: 河北地质大学.
    凌里杨,徐天吉,冯博,等. 2022. 基于深度学习的多波地震信号智能匹配方法与应用. 石油地球物理勘探,57(4):768~776.
    王竞,王世元,宴金旭,等. 2022. 中外场地分类研究现状及其应用讨论. 世界地震工程,38(3):236~245.
    温瑞智,冀昆,任叶飞,等. 2015. 基于谱比法的我国强震台站场地分类. 岩石力学与工程学报,34(6):1236~1241.
    姚鑫鑫,任叶飞,岸田忠大,等. 2022. 强震动记录的数据处理流程: 去噪滤波. 工程力学,39(增刊1):320~329.
    袁吉. 2021. 基于日本KiK-net强震动数据的场地效应研究. 硕士学位论文. 哈尔滨: 中国地震局工程力学研究所.
    周宝峰,温瑞智,谢礼立. 2012. 非因果滤波器在强震数据处理中的应用. 地震工程与工程振动,32(2):25~34.
    周少辉,蒋海昆,李健,等. 2021. 基于深度学习的地震事件分类识别——以山东地震台网记录为例. 地震地质,43(3):663~676.
    住房城乡建设部. 2024. GB 50011—2010建筑抗震设计规范(2016年版)局部修订条文(2024年版). 工程建设标准化,2024(9):72~79.
    Building Seismic Safety Council(BSSC). 2020. FEMA P-2082 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures. Washington: Building Seismic Safety Council,Federal Emergency Management Agency.
    Ghasemi H,Zare M,Fukushima Y,et al. 2009. Applying empirical methods in site classification,using response spectral ratio(H/V):A case study on Iranian strong motion network(ISMN). Soil Dyn Earthq Eng, 29(1):121~132.
    Gibbons S J,Ringdal F. 2006. The detection of low magnitude seismic events using array-based waveform correlation. Geophys J Int,165(1):149~166.
    Ji K,Ren Y F,Wen R Z. 2017. Site classification for National Strong Motion Observation Network System(NSMONS)stations in China using an empirical H/V spectral ratio method. J Asian Earth Sci,147:79~94.
    Ji K,Zhu C B,Yaghmaei-Sabegh S,et al. 2023. Site classification using deep-learning-based image recognition techniques. Earthq Eng Struct Dyn,52(8):2323~2338.
    Nakamura Y,Saito A. 1983. Estimations of amplification characteristics of surface ground and PGA using strong motion records[J]. Proc. 17th JSCE.
    Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat Geosci,2(12):877~881.
    Simonyan K,Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    Wu Y,Lin Y Z,Zhou Z,et al. 2019. DeepDetect:A cascaded region-based densely connected network for seismic event detection. IEEE Trans Geosci Remote Sens,57(1):62~75.
    Xie J J,Li X J,Wen Z P,et al. 2022. Soil profile database and site classification for national strong-motion stations in Western China. Seismol Res Lett,93(3):1930~1942.
    Yamazaki F,Ansary M A. 1997. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization. Earthq Eng Struct Dyn,26(7):671~689.
    Zhao J X,Irikura K,Zhang J,et al. 2006. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bull Seismol Soc Am,96(3):914~925.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张艺帆,席楠,杨天青,姜立新.基于VGG16卷积神经网络模型的川滇地区谱比法场地分类研究[J].中国地震,2025,41(1):46-57

复制
分享
文章指标
  • 点击次数:49
  • 下载次数: 92
  • HTML阅读次数: 153
  • 引用次数: 0
历史
  • 收稿日期:2024-04-18
  • 最后修改日期:2024-12-09
  • 在线发布日期: 2025-04-23
文章二维码
您是第2925644位访问者
中国地震 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!